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Abstract Properties and some applications of strongly orthogonal geminals (APSG)
are reviewed emphasizing the motivations for their use and their shortcomings. An
overview presents some techniques capable of improving the APSG function.
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1 Introduction

A characteristic feature of present-day quantum chemistry is the lack of simple though
reliable models which were capable of describing specific phenomena or particular
chemical processes. On the contrary, contemporary quantum chemistry focuses on
ab initio methods, where the aim is to perform accurate computations without any
reference to empirical data apart from universal constants of nature. While this goal
is impressive, the present authors are convinced that as the size of the studied systems
grows, there will be no way and no reason to compute everything from the very begin-
ning, but appropriate models, based on previously gained knowledge, will have to be
developed.

Forming effective models in chemistry, is not easy, however. This is because the
systems we investigate have too many degrees of freedom to let us treating them by
simple techniques, and too few degrees of freedom to treat them in a statistical manner.

In fact, there exist many qualitative models in chemistry, but these are usually too
qualitative to form a basis of a reliable treatment. For example, the modeling of a
polyatomic molecule by inner-shell cores and local, two-electron chemical bonds in
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the valence shell is inherently incorporated in the chemical thinking. Nevertheless, the
mathematical description of this model is not at all trivial.

The importance of the model is that electron pairs can be underlined by considering
the following fact. Many polyatomic molecules can be meaningfully, albeit approxi-
mately, decomposed to 2-electronic units. From the pure mathematical point of view
it appears that using electron trios or quadruples instead of electron pairs, one may
acquire a more exact description. This is not necessarily the case, however. To give an
example, the valence shell of the methane molecule cannot be viewed as an ensemble
of electron quads without loosing tetrahedral symmetry of the system. The seemingly
more approximate description of the 4 electron pairs preserves the spatial symmetry
of the molecule, facilitating a more correct picture.

In the past, several mathematical description of the two-electron chemical bonds
have been proposed. At the Hartree-Fock level, the concept of localized molecular
orbitals [1–21] became very fruitful, but such a description completely neglects the
correlation among the electrons, at least at the zero order. Perturbation theory is then
invoked to account for correlation effects, which has been effectively formulated [22–
32] also in terms of localized orbitals. Such a treatment, however, necessarily faces
the difficulty to treat the correlation of the two strongly interacting electrons also
perturbatively.

Correlation of close-lying electrons within a chemical bond can be included already
at the zero order. This leads to the so-called geminal theories, the name ‘geminal’
coming from the two twin electrons of a bond describing a two-electron function, the
geminal.

In this paper we briefly discuss geminal-type wave functions, list their advantages
and shortcomings, and review a few technologies that aim to improve the approxima-
tion they provide.

2 The notion of geminals

Consider first the Hartree-Fock determinant of a closed-shell system:

�HF = φ+
1↑φ

+
1↓

︸ ︷︷ ︸

φ+
1

φ+
2↑φ

+
2↓

︸ ︷︷ ︸

φ+
2

. . . φ+
N
2 ↑φ

+
N
2 ↓

︸ ︷︷ ︸

φ+
N
2

|vac〉 (1)

Here we arranged each β orbital right after their α counterpart, and indicated that they
may form a Hartree-Fock pair.

A natural generalization of this wave function reads

�GEMINAL = ψ+
1 ψ

+
2 . . . ψ

+
N
2

|vac〉 (2)
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where

ψ+
i =

Mi
∑

q=1

Ci
q φ

i+
q↑φ

i+
q↓ (3)

is a correlated singlet two-electron function, a geminal. Expansion coefficients C con-
nect geminals to the underlying one-particle functions. Notation φi

q expresses that,
when constructing geminal i , functions φi

q are selected only from a subspace of basis
orbitals associated to geminal i . These subspaces are mutually exclusive [33], which
is equivalent to restricting the geminals strongly orthogonal (vide infra). Mi is the
dimension of the i-th subspace.

The geminal structure specified above is not the most general one, since

(i) the indices q of the α and β functions are kept the same (“natural geminals”,
see below), and

(ii) each geminal is kept singlet individually. Terms where two triplet geminals are
coupled to form a 4-electron singlet, etc., would also be possible, but we do
not discuss them here.

A more general form of a geminal could be written as

ψ+
i =

Mi
∑

p,q=1

Ci
pq φ

i+
p↑φ

i+
q↓. (4)

Here the coefficient matrix should be symmetric for singlet states, thus a unitary trans-
formation within the i-th subspace can always be found bringing matrix C to diagonal
form. Accordingly, the special form of Eq. (3), as compared to the more general form
Eq. (4), depends merely on the basis set. Deriving the first-order spatial density matrix
from geminals Eq. (4), we obtain:

Pi
pq =

∑

σ

〈

ψi |φi+
pσ φ

i−
qσ |ψi

〉

= 2
Mi
∑

r=1

Ci
pr Ci

qr , (5)

where σ labels the spin. If, however, the density matrix is evaluated from geminals of
form (3), this expression is reduced to

Pi
pq = 2 δpq Ci

p Ci
q , (6)

thus the density matrices will also be diagonal. This justifies the term “natural geminal”
if the form (3) is used.

An essential difference between the constituents of the HF and the APSG wave
functions is manifested in the algebra the corresponding creation operators follow.
In the Hartree-Fock case we have the common fermion anti-commutation relations:
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[

φ+
iσ , φ

′+
kσ ′

]

+ = 0
[

φ−
iσ , φ

′−
kσ ′

]

+ = 0
[

φ+
iσ , φ

′−
kσ ′

]

+ = δikδσσ ′ (7)

which forms a Grassmann-algebra, while the geminal creation/annihilation operators
obey much more complicated algebraic rules:

[

ψ+
i , ψ

+
k

]

− = 0
[

ψ−
i , ψ

−
k

]

− = 0
[

ψ−
i , ψ

+
k

]

− = Q̂ik (8)

Here operators Q̂ik can be specified as

Q̂ik = δik −
∑

p

Ci
pCk

p

(

φk+
p↑φ

i−
p↑ + φk+

p↓φ
i−
p↓

)

(9)

for natural orthogonal geminals satisfying

〈ψi |ψk〉 = δik . (10)

The orthogonality condition (10) (called also as weak orthogonality, see e.g. [34,35])
can be expanded in the natural basis (see expansion (3) for the geminals) as

∑

p

Ci
pCk

p = δik, (11)

whereas in the general basis the same weak orthogonality condition reads:

∑

pq

Ci
pqCk

pq = δik . (12)

If the geminals are strongly othogonal [36–38], i.e., they are expanded in mutually
exclusive subspaces of orthogonal basis functions [33,39], this latter condition is sim-
plified to

∑

p

Ci
pr Ck

ps = δik for all r and s, (13)

since no common indices of basis functions for geminals i �= k are possible in this
case.

Rule (8) specifies commutation instead of the fermion anticommutation seen in (7).
This is a trivial consequence of the fact that a geminal is composed of two electrons,
so it can be considered as a bosonic system. It is quite important, however, that these
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bosons are not elementary, but composite particles, which is reflected by the appear-
ance of Q̂ik which form a matrix of operators [40–42].

For some other important works dealing with composite particles relevant to quan-
tum chemistry we refer to the papers [43–50]. Among these, the work by Ehrenfest and
Oppenheimer [47] in 1931 is perhaps the first which applies the notion of composite
particles.

Composite particles are often implicitly dealt with. For example, a successful model
in the current research on ultra-cold atoms is the so-called Bose-Hubbard model, where
alkali atoms are treated as composite particles, without discussing their internal struc-
ture [51].

Returning to geminals as two-electron composites, we see that dealing with a
complicated algebra expressed by Eq. (9) is extremely difficult and substantial sim-
plifications have to be made. This was the motivation behind introducing various
orthogonality constraints [34,35,52] the stronger and most widespread being the con-
dition of strong orthogonality [36–38]. Under strong orthogonality, the commutation
relation is simplified to [39]

[ψ−
i , ψ

+
k ]− = Q̂i δik (14)

with

Q̂i = 1 −
∑

m,n,l∈i

Ci
mlC

i
nl

(

φi+
n↑φ

i−
m↑ + φi+

n↓φ
i−
m↓

)

= 1 − 1

2

∑

m,n,∈i

Pi
mn

(

φi+
n↑φ

i−
m↑ + φi+

n↓φ
i−
m↓

)

(15)

in a general basis, while for natural geminals, using (6), this equation further
simplifies to

Q̂i = 1 −
∑

m∈i

(

Ci
m

)2 (

φi+
m↑φ

i−
m↑ + φi+

m↓φ
i−
m↓

)

. (16)

To express that (14) is a tremendous simplification indeed, we recall that

ψ−
i ψ

+
k |vac〉 = δik |vac〉 (17)

where we utilized that

Q̂i |vac〉 = |vac〉.
In words, operatorsψ−

i can be considered as annihilators toψ+
k , resulting that Wick’s

theorem remains valid as far as one has a single occurrence of a geminal in the string
studied.

The geminal wave function under the condition of strong orthogonality has been
termed as APSG (antisymmetrized product of strongly orthogonal geminals), and was
investigated by numerous authors [33,36,39,42,53–61].
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3 Connection between APSG and coupled cluster

Several authors have pointed out that the APSG wave function (as any separable wave
function satisfying the criterion of size-extensivity) can always be written in an expo-
nential form [62–65]. The short derivation presented below indicates the generality of
this statement.

First, let us rewrite a single natural geminal in exponential form:

ψ+
i =

Mi
∑
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Ci
q φ

i+
q↑φ

i+
q↓

= Ci
1 φ
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1↓ ,

where eT̂i was possible to introduce since
(

T̂i

)2 = 0 as well as all of its higher powers.

Summarizing:

ψ+
i = Ci

1 eT̂i φi+
1↑φ

i+
1↓

The entire APSG wave function can therefore be rewritten as

�APSG = ψ+
1 ψ

+
2 . . . |vac〉

= C1
1C2

1 · · ·
︸ ︷︷ ︸

C0

eT̂1 eT̂2 · · ·
︸ ︷︷ ︸

eT̂

φ1+
1↑ φ

1+
1↓ φ

2+
1↑ φ

2+
1↓ . . . |vac〉

︸ ︷︷ ︸

|HF〉

= C0 eT̂ |HF〉, (18)

where the |HF〉 Fermi vacuum is a principal determinant, it coincides with the
Hartree-Fock wavefunction if theφi one-electron functions represent HF SCF orbitals.
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Fig. 1 Dissociation curve of the N2 molecule obtained in STO-3G basis set by the APSG, CCSD and full
CI methods

Coefficient C0 appears here to ensure the normalization of�APSG to unity, and it may
be dropped if using intermediate normalization.

This derivation shows that the APSG Ansatz can be considered as a restricted CC
wave function. Since only doubly excited states are involved in the natural geminal
expansion (3), APSG is a restricted CCD. Further, since in APSG theory the under-
lying one-electron orbitals are obtained variationally, the elimination of singles in the
natural form (3) means that this wave-function is of Brueckner-type.

This observation is quite interesting, since, as shown in Fig. 1, CCSD method badly
fails in describing triple bond dissociation. The APSG method, although dissociates
to an incorrect spin state, provides a more attractive potential curve. This observation
stimulated several recent studies by Head-Gordon and coworkers [65,66].

4 Advantages and disadvantages of the APSG method

The following points collect the most important pros of using the APSG wave function.

1. The wave function retains the formal simplicity of HF, cf. Eqs. (1, 2).
2. Since each geminal describes a two-electron subunit, and the geminals tend to

be localized automatically upon variational optimization in most cases, geminals
may adequately represent two-electron chemical bonds.1 Thereby, the theory is
close to the chemists’ way of thinking.

3. The mathematical description shows that geminals (chemical bonds) correspond
to composite quasi-bosonic particles with an elegant algebra.

1 Though often observed, localization of optimized geminals is not always the case - this may be system
and basis set dependent.
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4. Owing to the strong orthogonality condition, geminals are easy to deal with.
5. The exponential cluster operator used by APSG relates it to the coupled cluster

wave function, and ensures size-extensivity of the APSG approach.
6. The method properly describes single-bond dissociation.
7. Finally, the APSG energy is strict upper bound to the true energy.

Of course, the simplifications applied in APSG theory have serious consequences.
We list below the most important ones.

1. Strong orthogonality is a too severe restriction, lifting it one may certainly obtain
significantly lower energies [67–69]. At this price, however, the method looses
its feasibility.

2. The APSG Ansatz is written in the so-called perfect-pairing approximation:
electrons 1,2 form one pair, 3,4 form another one, etc., but no 1,3 pairs (e.g.)
are considered. Therefore, no inter-geminal correlation is described by APSG.

3. The method does not describe properly multiple bond dissociation, since the
separated products are of incorrect spin states.

4. The advantages listed above emerge only for the ground electronic state, while
excited states are difficult to handle.

5. The method is appropriate only for molecules with a well-defined Lewis-structure,
and hardly describes inherently delocalized objects such as benzene. Similarly,
no collective phenomena are described by APSG.

A remedy of the last point is possible by allowing fragments composed of more
than two electrons, in the sense of group function theory. Improving APSG to reduce
the previous pitfalls is possible by several correction techniques. A few of them will
be discussed in the following section.

5 Improving geminals

5.1 Geminal-CI

In the Geminal-CI approach [70], we use the APSG wave function as the reference
state:

� =
∑

K

CK ÔK |APSG〉, (19)

where ÔK =p+i−, p+q+i−k−, . . . etc. are the one-electron, two-electron etc. excita-
tion operators. As discussed above, we can write the APSG reference in the following
form:

|APSG〉 = eT̂ |HF〉 (20)

with the cluster operator

T̂ =
∑

i

M
∑

q=2

Ci
q

Ci
1

φi+
q↑φ

i+
q↓φ

i−
1↑φ

i−
1↓ ,
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where i orbitals belong to the reference determinant:

|HF〉 =
N/2
∏

i=1

φi+
1↑φ

i+
1↓ |vac〉

Combining (19) and (20) the Schrödinger equation will be the following:

∑

K

ĤeT̂ ÔK |HF〉CK = E
∑

K

eT̂ ÔK |HF〉CK , (21)

where we utilized the commutation relation
[

eT̂ , ÔK

]

= 0.

Multiplying by Ô†
L and projecting by 〈HF| we get the so called APSG-CI equations

∑

K

〈HF|Ô†
L ĤeT̂ ÔK |HF〉

︸ ︷︷ ︸

HL K

CK = E
∑

K

〈HF|Ô†
LeT̂ ÔK |HF〉

︸ ︷︷ ︸

SL K

CK , (22)

which is a non-Hermitian generalized eigenvalue problem. (Alternatively, we could

proceed from Eq. (21) with the projector 〈HF|Ô†
Le−T̂ , which would result in the

diagonalization of the effective Hamiltonian e−T̂ ĤeT̂ usual in Coupled Cluster
theories.)

Numerical experience [70] shows that for total energies APSG-CISD energies
fall in between CISD and CCSD in case of simple second-row hydrides, being
usually closer to the latter. Size-consistency tests show that the method is fully
size-consistent for processes when the supramolecular system is decomposed into
two-electronic subsystems, e.g., the dissociation of a cluster of He atoms or hydrogen
molecules. Size-consistency errors are also decreased for other cases (i.e., dissociating
to non two-electronic fragments) as well, compared to the CISD error [70]. The APSG-
CI method can also result in better energy differences. For numerical results on the
dissociation of the HF molecule, the torsional rotation of H2O2 and the umbrella inver-
sion of NH3 we refer to [70]. Equation (22) is analogous to the EOM-CC equations
[71–73], the difference being merely in the cluster operator T̂ . This might suggest that
the APSG-CI method is capable of describing excitation energies. This expectation
was not confirmed by numerical calculations, however (Kállay and Surján, unpub-
lished).

5.2 Combining APSG with MP2

An extremely simple combination of the APSG method with standard MP2 calculation
can be done by the following recipe:

1. Perform an APSG calculation, providing E AP SG

2. Perform a standard MP2 with canonical MOs, providing EM P2
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Table 1 Inversion barrier of the
H2O and NH3 molecule,
computed in 6-311G** basis set

Abbreviation APSG-MP2 refers
to the procedure described in
Sect. 5.2

Method Barrier [ kJ/mol]

H2O NH3

APSG 163.30 29.47

APSG-MP2 148.54 25.69

MP2 145.85 24.39

CCSD 147.99 25.31

CCSDT 148.89 25.71

3. Perform a localized MP2 but only for intra-bond correlation, providing E intra−bond
M P2

4. Compute the energy as

E = E AP SG + EM P2 − E intra−bond
M P2

Here item 3. requires a small and straightforward modification of a localized MP2
routine [25,26], identifying and omitting intra-pair contributions. In spite of a few
promising results (see e.g. Table 1), a broader numerical study revealed that this
correction scheme is insufficient in most cases (M. Kobayashi, Á. Szabados and
P.R. Surján, unpublished).

5.3 Perturbation corrections to APSG

A more robust correction is obtained if considering the APSG as zero-order approxi-
mation and expanding the exact wave-function as a perturbation series. Among several
possibilities for a zero-order operator behind such an approach, it is most appealing to
use a zero-order containing the intra-geminal two-body terms of the Hamiltonian and
a mean-field term corresponding to inter-geminal interaction. Such a zero-order—first
suggested by Dyall [74]—incorporates all the interactions accounted for by the APSG
function and leads to a PT formalism adapted especially for the geminal wave-function.
While the two-body nature of the zero-order operator presents some computational dif-
ficulties, the results of such a theory are remarkably good already at second order [75].

Another sophisticated perturbation theory to correct geminal wave functions was
proposed by Rassolov [76]. Yet another second order correction to the perfect pairing
approximation was done in Ref. [77].

It is also possible to apply a less demanding correction scheme to the APSG func-
tion. This is provided e.g. by multi-configuration perturbation theory [78,79] (MCPT)
which is a general PT formulation, applicable to any zero order wave-function. The
theory considers a multiconfigurational wave-function—APSG for instance—and all
excited determinants to provide a basis in the configurational space. At the same time,
these functions are eigenfunctions of the zero-order Hamiltonian, facilitating a simple
inversion of the reduced resolvent. This leads to a transparent formulation and coding
of the PT expressions.

One determinant of APSG is regarded as “ground state” and it is not present among
the functions forming the basis. This is the pivotal determinant, denoted by HF in
Eq. (18). Provided that C0 is nonzero, the basis
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|�APSG〉, |K 〉, K = 1, . . . (23)

is complete in the CI space, it is however, non-orthogonal. To deal with this situation,
the reciprocal set to the functions (23) is constructed, which is formed by the tilded
functions

〈˜�AP SG |, 〈˜K |, K = 1, . . . .

Remarkably, no numerical procedure is needed to obtain the reciprocal set. Due to the
simple structure of the overlap matrix, the above functions can be given in the closed
form

〈˜�AP SG | = 1

C0
〈HF|

〈˜K | = 〈K | − CK

C0
〈HF|

With the use of these functions, a non-hermitian zero-order can be written down in
the spectral form

Ĥ0 = E0|�APSG〉〈˜�AP SG | +
∑

K=1

EK |K 〉〈˜K |. (24)

Here

E0 = 〈˜�AP SG |Ĥ |�APSG〉 (25)

is the energy of the reference state. This is not the APSG energy, which would be
given by the symmetrical expression EAPSG = 〈�APSG|Ĥ |�APSG〉. The deviation of
E0 from EAPSG is however, typically slight in numerical terms. Values EK in expres-
sion (24) of Ĥ0 are adjustable parameters of the theory.

Since functions |�APSG〉 and |K 〉 are eigenfunctions to Ĥ0 from the right, it is most
practical to expand PT corrections to the zero-order function on this basis. Tilded func-
tions being eigenfunctions to H0 from the left, the well known sum over states form
is valid for the PT terms. On has e.g.

|�1〉 = −
∑

K=1

|K 〉 〈˜K |Ŵ |�APSG〉
EK − E0

at first order, with Ŵ = Ĥ − Ĥ0. This gives rise to the second order energy expression

E2 = −
∑

K=1

〈˜�APSG|Ŵ |K 〉〈˜K |Ŵ |�APSG〉
EK − E0

Note, that E1 = 0, due to the choice Eq. (25).
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Various possible ways of defining zero-order excited state energies, EK lead to
various partitionings within the MCPT framework [78–80]. It is usual to consider the
form

EK = E0 +	K ,

where 	K is the energy difference appearing in PT denominators. It may be con-
structed as sums and differences of suitable one-particle energies, which are e.g. diag-
onal elements of the generalized Fockian present in MCSCF theory. This partitioning
was termed Davidson-Kapuy (DK), being in analogy with early studies of these authors
on PT, formulated in terms of localized orbitals [23,81]. Alternatively, one-particle
energies may be taken as ionization potentials and electron affinities calculated with
�APSG [82]. It is also possible to make the choice EK = 〈˜K |Ĥ |K 〉, giving rise to a
generalized Epstein-Nesbet (EN) partitioning [83,84]. Numerical experience shows
that the error of second order energies is somewhat smaller in EN than in DK parti-
tioning. On the other hand, size-consistency of the second order expression may be
ensured in the latter but not in the former [79]. An account on different partitionings
in MCPT is given in Ref. [80].

As the above discussion indicates, MCPT framework is a collective term, referring
to several different methods, arising e.g. from different partitionings. Apart from the
flexibility of the partitioning, variation of other ingredients of the theory have been also
explored. The original formulation e.g. works with an alternative set of basis function
in the CI space [78]. These are obtained by a Schmidt-orthogonalization of excited
determinants to�APSG, and still possess reciprocal vectors expressible in closed form.
By another modification of the formulae, it is possible to consider a non-diagonal zero-
order Hamiltonian in the MCPT framework [85]. This study was motivated by the fact
that a proper formulation of the Møller-Plesset (MP) partitioning [86] requires to con-
sider the generalized Fockian as zero-order, which is however, a non-diagonal one
in the general case. Solution for the first-order wave-function proceeds by iterating
the linear system of equations. For practical applicability of the approach, it is cru-
cial to keep the expansion of the first order venation of limited length. Starting from
the APSG function, it was found satisfactory to include determinants at most doubly
excited with respect the pivotal one. Numerical experience obtained on dissociation
curves of this MP-MCPT theory shows nice agreement with the more elaborate PT
formulation applying Dyall’s Hamiltonian [85].

5.4 Constant denominators in perturbation theory

The nice properties of the APSG function detailed in Sect. 4 encourage the testing of
PT treatments less elaborate than those of Sect. 5.3. Studies with simpler correction
schemes are motivated by the idea that the essential correlation effects of a molecular
system are captured by APSG. Hence, the negligible remainder could be possible to
obtain by a simpler formalism just as well.

In order to arrive at a such an approximation scheme, we start from Löwdin’s exact
implicit energy formula, which for an arbitrary reference function 
 reads as
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1 = 〈
|Ĥ(E − P̂ Ĥ)−1|
〉

In the following, we will substitute the APSG function for
. The implicit energy for-
mula can be obtained by the partitioning technique [87,88], introducing the projector
of the reference space

Ô = |�APSG〉〈�APSG|

and its orthogonal complement

P̂ = 1 − Ô.

We proceed by partitioning the Hamiltonian, and choosing a zero-order operator with
a common, averaged excited state energy, denoted by ν:

Ĥ0 = E0 Ô + ν P̂ . (26)

This simple form of Ĥ0 was first advocated by Unsøld and the resulting PT expan-
sions were studied in more detail by Cullen et al. [89,90]. The zero-order ground state
energy, E0 in Eq. (26) is in principle arbitrary, we will now assume that it equals the
APSG energy

E0 = 〈�APSG|Ĥ |�APSG〉 = 〈Ĥ〉.

In what follows, expectation values taken with�APSG will be denoted by 〈.〉 for brevity.
Making use of

H = Ĥ0 + V

and Eq. (26), the implicit energy formula can be rewritten as

1 = 〈Ĥ(E − ν P̂ − P̂ V̂ )−1〉,

where we used the orthogonal character of the projectors (Ô P̂ = 0). The well-known
identity

( Â − B̂)−1 = Â−1 + Â−1 B̂( Â − B̂)−1

= Â−1 + Â−1 B̂ Â−1 + Â−1 B̂ Â−1 B̂ Â−1 + . . . (27)

with Â = E − ν P̂ and B̂ = P̂ V̂ gives

1 = 〈Ĥ(E − ν P̂)−1〉 + 〈Ĥ(E − ν P̂)−1 P̂ V̂ (E − ν P̂)−1〉 + O(3). (28)

Furthermore, based on expression (27) one has

(E − ν P̂)−1|�APSG〉 = 1

E
|�APSG〉,
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which converts the implicit expression (28) into the form

E = 〈Ĥ〉 + 〈Ĥ(E − ν P̂)−1 P̂ V̂ 〉 + O(3)

Expanding now the energy into a Taylor-series and collecting terms of the same order,
up to order two, we see that only E0 can contribute to the second term on the right:

E = E0 + 〈Ĥ(E0 − ν P̂)−1 P̂ V̂ 〉 + O(3)

The inverse operator appearing in the second-order term can be expressed as

(E0 − ν P̂)−1 = (E0 Ô + E0 P̂ − ν P̂)−1 = Ô

E0
+ P̂

E0 − ν
.

leading to the expression

E = E0 + 〈V̂ P̂ V̂ 〉
E0 − ν

+ O(3). (29)

This second order energy bears direct relationship with the original MCPT formula-
tion discussed previously [78]. In fact, Eq. (29) can be obtained by substituting the
energy denominators of this MCPT expression by the common value E0 − ν.

The averaged zero-order excited state energy, ν in Eq. (29) is still unspecified. It
can be considered as a single parameter of the theory, which should be set to optimize
the performance. Such a condition was suggested by Feenberg [91,92], who required
the vanishing of the third order of the above expansion, i.e.

〈V̂ P̂(V̂ − 〈V̂ 〉)P̂ V̂ 〉
(E0 − ν)2

= 0 (30)

Note that the numerator does depend on ν through V̂ = Ĥ − Ĥ0 = Ĥ − E0 Ô − ν P̂ .
Since

〈V̂ P̂ V̂ P̂ V̂ 〉 = 〈Ĥ P̂ Ĥ P̂ Ĥ〉 − ν〈Ĥ P̂ Ĥ〉 = 〈Ĥ3〉c + E0〈Ĥ2〉c − ν〈Ĥ2〉c,

and 〈V̂ 〉 = 0, Feenberg’s condition results

ν = E0 + 〈Ĥ3〉c

〈Ĥ2〉c
(31)

for the averaged excited-state energy, with 〈.〉c referring to connected moments [93]
e.g.

〈Ĥ2〉c = 〈Ĥ2〉 − 〈Ĥ〉2 (32)

〈Ĥ3〉c = 〈Ĥ3〉 − 3〈Ĥ〉2〈Ĥ〉 + 2〈Ĥ〉3 (33)
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Fig. 2 Symmetric dissociation of the water molecule obtained by low-order terms of the CMX expansion,
computed with the Hartree-Fock and the APSG function. The basis set is 6-31G, angle � (H,O,H) is fixed
at 104.5 ◦C. Energy error displayed in the bottom panel is computed as Etotal − EFCI

Remarkably, the PT expansion arising from choice (31) agrees completely with the
connected moment expansion (CMX) derived earlier, based on the Horn-Weinstein
functional [94]. The very same, CMX expansion is also recovered, if requiring the
stationary condition [88]

d

dν

(

〈V̂ P̂ V̂ 〉
E0 − ν

+ 〈V̂ P̂(V̂ − 〈V̂ 〉)P̂ V̂ 〉
(E0 − ν)2

)

= 0

instead of Feenberg’s condition (30).
An example illustrating the performance of the CMX expansion is presented in

Fig. 2, showing the symmetric dissociation of the H2O molecule. As observable in the
Figure, the CMX corrected curves run roughly in parallel with the reference curve,
while getting gradually closer to the full CI curve. Since the Hartree-Fock wave-
function yields too large force constants, it is less advantageous to apply CMX to this
reference function. The APSG function on the other hand produces a much improved
shape for the potential curve. As the bottom panel of Fig. 2 reflects, the curve shape is
practically conserved but total energies are significantly improved if adding the CMX
corrections computed with this reference function.

Table 2 shows the total energies for a Be atom calculated in 6-311G** basis set
at the Hartree-Fock, MP2, APSG and FCI levels in comparison with the CMX2 and
CMX3 corrected energies.

123



J Math Chem (2012) 50:534–551 549

Table 2 Total energies for the
Be atom in 6-311G** basis set
in atomic units

Etot/Eh

HF-SCF −14.57187

MP2 −14.59847

HF + CMX2 −14.58179

HF + CMX3 −14.58789

APSG −14.61734

APSG + CMX2 −14.63210

APSG + CMX3 −14.63323

FCI −14.63338

6 Conclusion

The advantages of the APSG wave function listed in Sect. 4 make them challenging
candidates for developing a geminal model chemistry, a point emphasized by Rassolov
[76,95–97]. The disadvantages listed there stimulated developments of several cor-
rection schemes. Some of these have been reviewed in the present paper. Much work
has yet to be done, however, to establish a robust and general geminal-based method
facilitating black-box calculations. On the other hand, the geminal approach is indeed
suitable to perform calculations on large systems where one is focused on locally bro-
ken chemical bonds or similar effects needing high-level account of local correlation.
In these cases, the possibility of a specific treatment may be more important than
black-box generality.
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